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Abstract. Transfer learning has promised to generalize structural health
monitoring (SHM) of bridges, as it permits one to reuse long-term mon-
itoring data across similar structures. Studies have been published using
numerical and monitoring data from bridges sharing global similarities.
This paper presents the first application of unsupervised transfer learning
between twin concrete bridges. The two bridges are located side-by-side,
but their construction time is separated by almost three decades. This
paper proposes a framework to reuse monitoring data in the undamaged
condition from the old bridge to address data scarcity and uncertainty in
the training of machine learning algorithms for SHM of the new bridge.
To deal with the scarcity of data, a numerical model is developed to simu-
late the undamaged condition of the new bridge. The model is calibrated
using Bayesian inference through Markov-Chain Monte Carlo simulations
with the Metropolis-Hastings algorithm. To deal with sources of uncer-
tainty, a transfer learning is used to perform domain adaptation of data
sets from both bridges. The results show the numerical model is capable
of simulating the dynamics of the new bridge and transfer learning is
capable of adapting the distribution domain of the data from the old
bridge in such a way that it can be reused to train machine learning
algorithms to classify observations from the new bridge.

Keywords: Bridges - Structural Health Monitoring - Unsupervised Trans-
fer Learning - Transfer Learning - Domain Adaptation - Bayesian Infer-
ence - Finite Element Modeling - Sensitivity Analysis
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1 Introduction

Structural health monitoring (SHM) has long been employed to enhance reliabil-
ity in bridge management systems, largely because traditional visual inspections
often fall short of detecting early-stage damage [1]. These shortfalls have led to
a growing interest in automatic damage classification methods, which use moni-
toring systems to identify the onset of structural problems. Over the past three
decades, a statistical pattern recognition paradigm based in machine learning
has evolved to handle massive data streams from sensors installed on bridges
[213]. By focusing on damage-sensitive features, these data-driven methods aim
to distinguish between variations due to environmental and operational condi-
tions and those due to genuine structural damage.

When no labeled data about damaged conditions exist, unsupervised learn-
ing becomes a critical tool [4]. It assumes that historical data represent mainly
the undamaged condition and seeks to identify anomalies that deviate from
this norm. Although unsupervised learning can be powerful, the generalization
of SHM demands more advanced techniques, leading to the emerging field of
transfer learning for SHM. Transfer learning leverages information from a well-
characterized source bridge to speed up or improve damage detection in a target
bridge with limited data [5].

This paper analyzes two structurally identical bridges, referred to as the
“‘new” and “old” bridges. It is assumed the old bridge has an extensive history
of monitoring data, providing a well-understood operational condition, whereas
the new bridge has no monitoring data since its commissioning. The new bridge
exhibits excessive deformation at its central span, suggesting the presence of
damage, making the numerical model essential for reconstructing its undam-
aged condition. A stochastic finite element (FE) model replicates the pristine
state and is updated with limited experimental data in a Bayesian framework.
Therefore, using the updated model and domain adaptation within an unsuper-
vised framework, damage detection is achieved even with scarce information on
the undamaged state.

Besides Section 1, this paper is organized as follows. Section 2 introduces the
feature-based unsupervised transfer learning approach using joint distribution
adaptation, the twin concrete bridges over the Itacaiinas River, and the numer-
ical simulation model. Section 3 details the development and updating of the
stochastic numerical model for the new bridge, along with the proposed damage
classification framework, comparing training strategies and evaluating domain
adaptation performance. Finally, Section 4 presents conclusions and potential
future research.
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Fig. 1: Bridges over the Itacaitinas River: (a) the new (left) and old (right) bridges
just after the inauguration of the new one; (b) excessive deflections (left) and
potential cracks identified in the new bridge (right); and (c) and (d) one-year
experimental natural frequencies of the old (A) and new (e) bridges, respectively.

2 Methodology

2.1 Twin concrete bridges over the Itacaitinas River: Structural
description and experimental data sets

Two prestressed concrete box girder bridges, located side by side over the Ita-
caitnas River in Marabd, Brazil, were built at different times to accommodate
increasing local traffic demand (Figure [1)). These bridges are considered twins,
as they were designed to be structurally identical in dimensions, materials, and
appearance. However, exact replication is challenging due to variations in mate-
rials, construction methods, and environmental conditions during construction.
The old bridge was constructed in the 1980s, while the new one opened to traffic
in 2010. Both have a main span of 120 m and two side spans of 70 m each.
In 2017, reports of excessive deformation in the new bridge’s central span led
to a visual inspection. Table [I] presents the first five measured modes for the
old bridge and the first six identified modes for the new bridge. Despite their
structural similarities, slight differences in natural frequencies are observed.

2.2 Numerical model

As no experimental data are available for the undamaged condition of the new
bridge, a numerical model solved using the FE method is developed to estimate
it. This model is based on blueprints provided by DNIT and implemented in
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Table 1: Comparison between old and new bridges in terms of frequencies. *Note:
the letter L is used to specify a lateral mode found in the new bridge only.
Old bridge New bridge

Mode Description

[Hz] [Hz]

1 First bending 1.47 1.06
1L* Lateral bending - 1.42
2 Second bending 2.63 1.74
3 Third bending 2.82 2.08
4 Fourth bending 3.81 2.92
5 Fifth bending 5.83 4.57

CSiBridge v23.3.1. The bridge girder is modeled with beam elements featuring 12
distinct cross-sections. A total of 23 calibration parameters are incorporated, as
detailed in Table |2 including spring support stiffness, soil-structure interaction
coefficients, and material properties of asphalt and concrete.

Table 2: Numerical model: parameters and search range. *Note: SSI - soil-
structure interaction.

Index Parameter Unit Description Ref. value Min Max
1 Kigrq MN/m Longitudinal spring at P1 - 100 1000
2 ki MN/m Lateral spring at P1 - 10 1000
3 iR MN /rad Rotational spring around Y at P1 - 100 1000
4 iR3 MN/rad Rotational spring around Z at P1 - 100 1000
5 kfiq MN/m Longitudinal spring at P4 - 10 1000
6 ko MN/m Lateral spring at P4 - 1 1000
e kfpo MN/rad Rotational spring around Y at P4 - 10 1000
8 kfps MN /rad Rotational spring around Z at P4 - 10 1000
9 Kpy, MN/m? SSI at P1 on soil layer up to 4 m 150 100 200
10 Kp,, MN/m? SSI at P1 on soil layer between 4 and 10 m 200 150 250
11 Kp g MN/m3 SSI at P1 on soil layer between 10 and 16 m 200 150 250
12 Kpy, MN/m3 SSI at P2 on soil layer up to 6 m 170 100 250
13 Kp,y, MN/m? SSI at P2 on soil layer between 6 and 16 m 200 150 300
14 Kpg, MN/m3 SSI at P3 on soil layer up to 11 m 170 100 250
15 Kpy, MN/m3 SSI at P3 on soil layer between 11 and 20 m 200 150 300
16 Kpy, MN/m? SSI at P4 on soil layer up to 2 m 10 8 15
17 Kpy, MN/m? SSI at P4 on soil layer between 2 and 4 m 40 30 60
18 Kpy, MN/m3 SSI at P4 on soil layer between 4 and 8 m 60 45 75
19 Kpy, MN/m? SSI at P4 on soil layer between 8 and 14 m 200 150 250
20 Ecas GPa Elastic modulus of concrete C25 29 28 32
21 FEcss GPa Elastic modulus of concrete C35 33 30 35
22 E, GPa Elastic modulus of asphalt 5.0 4.5 5.5
23 D, kg/m3 Mass density of asphalt 3900 3600 4200

2.3 Feature-based unsupervised transfer learning

This paper considers a feature-based transfer learning approach, as bridge SHM
traditionally relies on damage-sensitive features embedding structural knowl-
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edge. Transfer learning is implemented through domain adaptation to reduce the
distance between source and target features, enabling the classifier to generalize
within the latent feature space under a binary classification (undamaged and
damaged conditions). JDA, a kernel-based transfer learning method, projects
source (D) and target (D;) features into a shared latent space using a nonlinear
mapping function ¢(-), minimizing the mismatch between their joint probability
distributions. A classifier based on the Mahalanobis squared distance is used in
the latent space, and a hypothesis test is established, in which the null hypoth-
esis is the undamaged condition and the alternative hypothesis is the damaged
condition [6]. Under this hypothesis, if an observation z; is extracted from the
undamaged condition and it corresponds to a multivariate Gaussian distribution,
then the DI will be Chi-squared distributed with d degrees of freedom, DI ~ x?2.
Thus, observations from the damaged condition can be defined when their DIs
are above a certain level of significance. A level of significance equal to 5% is
normally acceptable in the bridge engineering field.

3 Results

3.1 Stochastic model development

An updating process is proposed to develop a stochastic numerical model that
replicates the dispersion of experimental natural frequencies. Epistemic uncer-
tainty is addressed by incorporating variance into the model through sampling
PDFs for relevant input parameters. Both mode shapes and frequencies serve
as target benchmarks for refining the numerical model parameters. Notably, po-
tential damage at the bridge’s main span center may influence these frequencies
and mode shapes, with bending modes—especially those peaking at the damage
location—Dbeing most affected. To account for this, the model updating process
focuses on mode shapes exhibiting a node at the bridge’s center, selecting exper-
imental modes 2 and 4. Additionally, to prevent an overly unconstrained model,
the first lateral bending mode (1L) is included as an updating target. Conse-
quently, the process aims to adjust six targets: three mode shapes (1L, 2, and
4) and their corresponding natural frequencies.

The initial step uses Latin hypercube sampling across all 23 parameters
to locate regions suitable for optimal solutions. Latin hypercube sampling ef-
ficiently covers the entire range of each variable, making it well-suited for high-
dimensional spaces with limited samples. Boundaries for these regions are based
on literature reference values for material properties (e.g., Souza et al. [7]) or
plausible stiffness parameter values, as detailed in Table [2| Mode assurance cri-
teria (MAC) are used to establish numerical-experimental mode correspondence.
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A global sensitivity analysis employing Sobol indices [§] is conducted using
the UQLab framework for MATLAB [9]. In this analysis, input parameters are
perturbed around the optimal candidates identified via Monte Carlo simula-
tions, where parameters are sampled from a uniform distribution centered on
the best-fitting values, with bounds extending +20%. Figure [2| depicts the first-
order Sobol indices. The three evaluated modes are predominantly influenced
by kiyis Kfuis Efysr Ec2s, and Ecss. The results suggests that targeted param-
eter adjustments could effectively manipulate the bridge’s vibrational behavior.
Therefore, the next steps are performed using only five parameters: k;;,,, ks,
ka27 E0257 and E035.
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Fig. 2: First order Sobol indices for modes 1L, 2 and 4.

Following the global search and sensitivity analysis, a genetic algorithm (GA)
[8] is employed to optimize the relevant parameters identified through the Sobol
analysis. Only these selected parameters are refined in the optimization process.
Table [3| compares the experimental natural frequencies of the new bridge with
those from the numerical model before and after the local search using the genetic
algorithm. Notably, the frequency error for the updated modes (1L, 2, and 4) is
0.1%.

The stochastic updating process incorporates epistemic uncertainty into the
numerical model, enabling it to replicate the mean experimental response and
variability by incorporating PDF's for relevant input parameters. This process fol-
lows a Bayesian inference framework using MCMC simulations with the Metropolis-
Hastings algorithm[10]. In the genetic algorithm analysis, k;,, and ky,, were
identified as correlated variables. Such correlation can destabilize the chain, as
the sampling algorithm may counterbalance one variable’s variation with the
other. To mitigate this issue, only k;,,, is retained due to its greater influence
over ky,,, as indicated by the Sobol indices in Figure [2]
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Table 3: Comparison between experimental measurements for the new bridge and
numerical model results before and after the genetic algorithm optimization.

Initial Optimized
Exp. Num. Error Num. Error
Mode [Hz] [Hz] [%] MAC [Hz] [%] MAC

1 1.06 1.18 11.0 100 1.16 9.6 1.00
1L 142 145 23 068 142 01 0.67
2 174 175 09 079 1.74 0.1 0.79
3 2.08 215 34 097 212 1.8 0.96
4 292 296 1.7 1.00 292 01 1.00
5 4.57 477 45 1.00 471 3.1 1.00

The prior probability distributions for the variables © = {k;,,, kf,,, Ecas,
Ec3s5}T are defined as uniform distributions encompassing the average values
obtained by the genetic algorithm (GA). Their limits are: k;,, ~ U(600,900)
[MN/ID], kaQ ~ L{(25,40) [MN/rad], Ecos ~ Z/{(24,30) [GP&], and FEgss ~
U(29,34) [GPa]. These ranges include the optimal GA-derived values and pro-
vide a search range for the sampling algorithm. Each Markov-Chain Monte
Carlo (MCMC) round initializes at the GA-derived mean optimal values ©; =
{793,33.8,27.2,31.1}T. The variance of the likelihood function is adjusted to
maintain a stable acceptance rate between 40% and 50%][10], with the chain
simulated over 1000 samples. The first 20% of samples are discarded as burn-
in to refine the final PDFs. Figure [3] presents the posterior distributions of the
updated parameters.

3.2 Damage classification

The natural frequencies of vibration are used herein as damage-sensitive features.
In the original feature space, each observation is composed of the first five natural
frequencies of each bridge associated with five bending modes at the bridge deck.
For the old bridge, there are 52 experimental observations. For the new bridge,
there are 52 experimental measurements corresponding to weekly observations
(Figs. |1k and d) and 3000 numerical observations.

Training strategy #1: Experimental data from the source bridge with-
out domain adaptation The classifier is built with a training data set com-
posed of experimental natural frequencies from the source (or old) bridge in its
undamaged condition, without any domain adaptation. The test data set com-
prises 3000 numerical and 52 experimental observations from the target (new)
bridge in the undamaged and damaged conditions, respetively. This damage de-
tection strategy intends to assess the usefulness of the data from the old bridge
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Fig. 3: Sampled posterior probability for the stochastic updating procedure: (a)
ki, distribution; (b) ky,, distribution; (c) Ecos distribution; and (d) Ecss
distribution. In the histograms, the colors represent: Sampled data (), kernel
density estimate (KDE) (—) and cumulative density function (CDF) (—).

to be directly reused to detect damage in the new bridge. Fig. 4a shows the dam-
age indicator (DI) for each numerical and experimental observation of the new
bridge, along with the threshold. The classifier trained without transfer learning
is capable of detecting all observations corresponding to the potentially damaged
condition (experimental data), at the expense of failing the correct classification
of all observations from the undamaged condition derived from the numerical
model, yielding an accuracy of 1.64%.

Training strategy #2: Experimental data from the source bridge with
domain adaptation The training data set is composed of experimental obser-
vations from the source (or old) bridge in the latent feature space. The trans-
formation matrix (using JDA) is built with experimental observations from the
source bridge, along with 3000 numerical observations from the target bridge.
A total of 3000 numerical observations were used, but it should be noted that
no influence on the amount of numerical samples used in the transformation
matrix was found. Figure [5] shows the marginal distributions of the source and
target in the latent feature space, which highlights an alignment of the mean of
the data sets from both bridges in the latent feature space. The test data set
comprises all 3000 numerical (undamaged condition) and 52 experimental (dam-
aged condition) observations from the target bridge. Fig. shows the DI for
each observation, along with a threshold assuming a level of significance of 5%.
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Fig. 4: Classification performance (damage detection) in the latent feature space
for the new bridge data: (a) training strategy #1, and (b) training strategy
#2. In these figures, (o) represents “Undamaged - Target” observations, and (e)
represents “Damaged - Target” observations.

Almost all observations from the damaged condition are classified as outliers,
yielding an accuracy of 99.9%.
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Fig.5: Marginal distributions of the source and target domains in the latent

feature space

4 Conclusions

The proposed framework for unsupervised transfer learning across twin con-
crete bridges based on data sets from both monitoring and stochastic numerical
model with Bayesian calibration provided substantial benefits in addressing data
scarcity and different sources of uncertainty (epistemic and random) in the con-
text of bridge SHM. The comparison analysis showed the superiority of a classi-
fier created in the latent feature space backed by transfer learning and domain
adaptation, when using both type of data sets (numerical and experimental).
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The proposed Bayesian calibration has been able to identify and update
relevant input parameters of the numerical model solved by the FE method
while accounting for their epistemic uncertainties. The updated mode shapes
closely agreed with the experimental ones, including statistical dispersion.

The JDA demonstrated that it had learned the mapping within the shared
feature space. The domain adaptation minimized the distance between the two
domains (source and target) by approximating the centroids and reducing epis-
temic uncertainty. The threshold definition based on the source bridge’s variance
showed to take into account the random uncertainty. The local random variabil-
ity encoded in the monitoring data from the old bridge was transferred to the
classifier of the new bridge, also taking into account the dynamics presented in
the numerical data.
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